or incorrect. Your score is not directly determined by how many questions you get right, but on how hard the questions are. You want to answer as many hard questions as possible. This is the reason to concentrate on the earlier questions so you can get harder questions which are worth more points.

2. Process of elimination and skipping.

Skipping isn't allowed on the GMAT, you have to answer the question to move on to the next one. If you can't answer a question, you have to guess to move on. Use process of elimination to identify the wrong answers so you can focus on the possible right answers

3. Finish the GMAT.

Answer all questions on the test even if you have to guess to finish as you run out of time at the end; this is because there is a penalty for unanswered questions on the GMAT. Every question left unanswered will decrease your score by a greater amount than a question that you answered incorrectly.

AIGEBRA REVIED

COMBINING VARIABLES

adding, subtracting, multiplying, dividing When adding or subtracting a variable, add or subtract the coefficient (number in front) of the variable.
$a+a=2 a$

$$
a \times a=a^{2}
$$

$a b+a b=2 a b$
$a b \times a b=a^{2} b^{2}$
$a \times c=a c$
$a+c=a+c$ $a^{2} \times a^{3}=a^{5}$ $\frac{b^{9}}{b^{2}}=b^{7}$

ALSO REMEMBER...

$a^{0}=1$ (Anything with a zero exponent is equal to 1)

$$
\begin{array}{l:l|l}
m^{-5}=\frac{1}{m^{5}} & m^{\frac{x}{y}}=(\sqrt[y]{m})^{x} & n^{\frac{1}{2}}=\sqrt{n}
\end{array}
$$

FACTORING

Difference of two squares:

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

F.O.I.L. (First-Outer-Inner-Last)
$(a-b)^{2}=(a-b)(a-b)$
$(a+b)^{2}=(a+b)(a+b)$
$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

NOTE: $(a-b)^{2}$ is NOT equal to $\left(a^{2}-b^{2}\right)$

WORD PROBLEMS - Translating word problems into math equations

WORDS	SYMBOL	EXAMPLE	EQUATION
is, was, has	=	Eva is the same age as Wall-E.	$\mathrm{E}=\mathrm{W}$
more than, older than, sum of	+	Eva has four more cookies than Wall-E	$\mathrm{E}=4+\mathrm{W}$
less than, differences, fewer than	-	Eva is 50 centimeters less than Wall-E's height	$E=W-50$
of, product	X	Eva ate $\frac{2}{5}$ of the cake.	$E=\frac{2}{5} \times C$
for, per	/	The car was travelling 20 miles per hour.	$20 \frac{\text { miles }}{\text { hour }}$
what percent	$\frac{\mathrm{x}}{100}$	What percent of 50 is 10	$\frac{\mathrm{x}}{100} \cdot 50=10$

EXTRA TIPS... Assign variables to each person or object compared or identified in the problem using the first letter of the person's (or object's) name.
Also Remember \quad If $0<X<1$ i.e 0.75
$(0.75)^{2}<\sqrt{0.75}$
But $X>1$ i.e 2.5
$(2.5)^{2}>\sqrt{2.5}$
$\sqrt{2}=1.4$
$\sqrt{3}=1.7$

numbens \&

 operations
INTEGERS

Integers are all whole numbers \& their
negative (including zero) e.g. $-2,-1,0,1,2,3$
Integers do not include fractions \& decimals.
Zero is neither a positive or negative integer.

CONSECUTIVE INTEGERS

Consecutive integer expression: $\mathrm{n}, \mathrm{n}+1, \mathrm{n}+2$ ($n=$ any integer)
Consecutive EVEN / ODD integer expression: $\mathrm{n}, \mathrm{n}+2, \mathrm{n}+4$ ($n=$ any even/odd integer)
The average of a consecutive set of numbers is the middle number

$$
10,11,12,13,14
$$

When you divide the sum of a consecutive set by the number of values, the result is the middle number $=$ AVERAGE
$5+6+7+8+9=\frac{35}{5}=7$

PRIME NUMBERS

A prime number is a positive integer greater than 1 , which is only divisible by itself \& 1 .
The number 1 itself is not a prime number.
Examples are 2, 3, 5, 7 ..
NOTE: 2 is the first \& only even prime number

FACTORS \& MULTIPLES

FACTOR		LT
2×2	$=$$=$$=$	4
2×3		6
2×4		8

RATIO \& PROPORTIONS

The following forms are all the same:

FRACTION	RATIO	RATIO
$\frac{2}{5}$	$2: 5$	2 to 5

The percent sign (\%) means divided by 100; hence $56 \%=\frac{56}{100}$
Proportion is when two ratios are set equal to one another:

$$
\frac{x}{2}=\frac{9}{3}
$$

When two ratios equal to one another (proportion), use cross multiplication to find the unknown variable. Using the above example:

$$
\begin{aligned}
3 x & =18 \\
x & =6
\end{aligned}
$$

[^0]
gEOMETRY REVIEW

AREA, PERIMETER, VOLUME

SHAPE

AREA (A)	PERIMETER (P)	VOLUME (V)
$A=L \times W$	$P=2 L+2 W$	$\mathrm{V}=\mathrm{LWH}_{\text {ofprism }}$
$\mathrm{A}=\mathrm{S}^{2}$	$P=4 S$	$V=S^{2} \mathrm{H}_{\text {ofprism }}$
$\mathrm{A}=\frac{1}{2} \mathrm{Bh}_{\text {of friangle }}$	$\begin{aligned} & \mathrm{P}=\mathrm{SOS} \\ & \text { (sum of all sides) } \end{aligned}$	$\mathrm{V}=\frac{1}{2} \mathrm{BhH}_{\text {ofprism }}$
$\mathrm{A}=\pi \mathrm{R}^{2}$	$\mathrm{C}=2 \pi \mathrm{R}$	$\mathrm{V}=\pi \mathrm{R}^{2} \mathrm{H}_{\text {ofprism }}$
$\mathrm{A}=\mathrm{B} \times \mathrm{h}_{\text {ofparallelogram }}$	$\mathrm{P}=\mathrm{SOS}$	$\mathrm{V}=\mathrm{BhH}_{\text {of prism }}$

STATISTIOS \&
PROBABIUTY
ARITHMETIC MEAN (AVERAGE)
Average $=\frac{\text { Sum }}{\text { Number }}$

MEDIAN

The middle value in increasing or
decreasing order.
Example:
2, 3, 4, 5, 7 median $=4$
$2,3,4,5 \quad$ median $=\frac{3+4}{2}=3.5$
MODE
The most frequently
occuring value.
Example:
$1,3,3,4,5,3,7$
mode $=3$
FRACTIONS \& PROBABILITY
Fraction $=$ Probability $=\frac{\text { Focus }}{\text { Total }}$
Example:
$\{2,3,5,7,10,13\}$
Fraction / Probability of selecting an odd number from the set above is:

$$
\frac{4}{6}{ }_{\text {(\#otal }}^{\text {(Tof of of values) }}
$$

$\mathrm{n}=$ total
$\mathrm{c}=$ combination
$r=$ focus
${ }^{n} C_{r}=\frac{n!}{(n-r)!r!}$

SLOPES, POINTS, \& LINES MIDPOINT FORMULA
$\mathrm{X}_{\text {midpoint }}$

$$
\mathrm{y}_{\text {midpoint }}=\frac{\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)}{2}
$$

Given points $(3,1) \&(6,5)$
$x_{2}=6, y_{2}=5$

$$
\begin{aligned}
& \mathrm{x}_{\text {midpoint }}=\frac{(3+6)}{2}=4.5 \\
& \mathrm{y}_{\text {midpoint }}=\frac{(1+5)}{2}=3
\end{aligned}
$$

SLOPE FORMULA

slope of a line: $m=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{\Delta y}{\Delta x}=\frac{y}{x}=\frac{\text { Rise }}{\text { Run }}$
Example:
Given points $(3,1)$ and $(6,5)$

$$
m=\frac{(5-1)}{(6-3)}=\frac{4}{3}
$$

EQUATION OF A LINE FORMULA

$y=m(x)+b$

$m=$ slope of the line
$b=$ the y intercept of the line

POLYGONS

Sum of interior angles of a Polygon:
$(n-2) \times 180^{\circ}(n=$ the number of sides)
Example: For a heptagon, $\mathrm{n}=7$
$(7-2) \times 180^{\circ}=900^{\circ}$

Tips \& Strafegies

1. Do not waste time solving the problem.
2. First consider each statement seperately
3. Answer the question being asked
4. Statement $1 \& 2$ are statements of fact and will always be true.

[^0]: This "prep sheet" has been designed as a quick reference source while preparing for the GMAT Math exams. Success Prep in no way condones cheating, therefore this prep sheet is to be used only as a study guide and is not to be taken into the GMAT exam.

 Copyright © 2004-2012 Success Prep. Patent Pending.

